
Measures in SQL
Julian Hyde
Google Inc.

San Francisco, CA, USA
julianhyde@google.com

John Fremlin
Google Inc.

New York, NY, USA
fremlin@google.com

ABSTRACT
SQL has attained widespread adoption, but Business Intelligence
tools still use their own higher level languages based upon amultidi-
mensional paradigm. Composable calculations are what is missing
from SQL, and we propose a new kind of column, called a measure,
that attaches a calculation to a table. Like regular tables, tables with
measures are composable and closed when used in queries.

SQL-with-measures has the power, conciseness and reusability
of multidimensional languages but retains SQL semantics. Measure
invocations can be expanded in place to simple, clear SQL.

To define the evaluation semantics for measures, we introduce
context-sensitive expressions (a way to evaluate multidimensional
expressions that is consistent with existing SQL semantics), a con-
cept called evaluation context, and several operations for setting
and modifying the evaluation context.

CCS CONCEPTS
• Information systems→Relational database query languages;
Data analytics; Online analytical processing.

KEYWORDS
data management, query processing, business intelligence

ACM Reference Format:
Julian Hyde and John Fremlin. 2024. Measures in SQL. In Companion of the
2024 International Conference on Management of Data (SIGMOD-Companion
’24), June 9–15, 2024, Santiago, AA, Chile.ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3626246.3653374

1 INTRODUCTION
About thirty years ago the first Business Intelligence (BI) tools were
introduced. They had a semantic model based on the multidimen-
sional model, and good support for data exploration and visualiza-
tions. Since then, the SQL language has expanded immeasurably
in its capabilities, adding support for XML, JSON, geospatial, tem-
poral, text and nested data. An increasing proportion of business
data resides in powerful cloud SQL engines. But today’s BI tools
continue to use semantic models based on the multidimensional
model. Why?

Semantic models serve several purposes. They provide the build-
ing blocks fromwhich users can build queries (using some language,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0422-2/24/06
https://doi.org/10.1145/3626246.3653374

perhaps graphical, perhaps textual). They guide users in the con-
struction of queries, and aid creation in visualizations and reports.
But we believe that their core strength is the ability to express
calculations in a concise manner, and to compose and reuse those
calculations.

In this paper, we show that the relational model imposes rep-
etition of filter expressions: changing the date range of a query
requires updating many WHERE clauses. Therefore the challenge
is how to extend the data model offered by SQL, in ways that do
not change the semantics of currently valid SQL expressions or
confound SQL users’ expectations. Incorporating ideas from soft-
ware engineering, we extend SQL’s fundamental data type, the
table, with a new type of column, called a measure, attaching a
context-sensitive expression (CSE) to a table. We show that tables
with measures have a similar closure property to regular tables.

SQL with measures can be expanded into traditional SQL. There-
fore, the path to integrating measures into existing systems is rela-
tively straightforward.

1.1 Contributions
Encapsulation. Measures define calculations close to the data.
When a measure is used, it maintains its relationship to its table.

Clarity of query plan. By eliminating the need for self-joins
and other forms of repetition in many queries, measures make it
easier for the optimizer to choose more efficient algorithms.

Easier target for generative AI. Generative AI algorithms
find it hard to correctly generate SQL queries that have repeated
subqueries, especially if those subqueries need to be consistent.
Measures enable more concise queries that are easier for AI to
generate.

Modeling. Measures allow you to define calculations in views,
and CSEs allow you to compose calculations into richer measures.
SQL can therefore take over work that was previously done in a BI
tool (semantic layer and multidimensional query language).

Abstraction. You can use a view without having knowledge of
the formulas in that view, or access to the tables referenced by the
view.

All of the above are delivered while retaining SQL’s closure
properties, security, and governance. Our extensions are backwards
compatible: queries that do not use measures have the same seman-
tics as regular SQL.

These extensions have been implemented in Apache Calcite
[2] and in Looker’s Open SQL interface [7] (described further in
subsection 5.6).

2 RELATEDWORK
Adding measures to SQL requires us to bring together two theories,
and classes of database, long considered to be incompatible. It is
worth reviewing their parallel histories and the path to convergence.

https://orcid.org/0009-0003-7857-7467
https://orcid.org/0009-0002-6591-6370
https://doi.org/10.1145/3626246.3653374
https://doi.org/10.1145/3626246.3653374

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Julian Hyde and John Fremlin

The relational model [3] gave rise to relational databases during
the 1970s, and the dimensionalmodel tomultidimensional databases
in the 1990s. Vendors of the latter, assisted by E.F. Codd [4], were at
pains to point out how relational databases’ record-oriented storage
was fundamentally unsuitable for OLAP [5].

Multidimensional databases had no textual query language and
were generally inseparable from their user interface (which was
provided by the same vendor); in early attempts to standardize
access to multidimensional databases (MDAPI [16] and JOLAP [13])
programmers would construct queries by calling an API.

It was difficult to imagine unifying relational and multidimen-
sional databases when they differed in the fundamentals: whether
there should be a query language; the data model (relations, rows
and columns versus cubes, dimensions, hierarchies, and measures);
and the algebra (relational operators select, project, join, union
versus dimensional operators slice, dice, drill, pivot [15, 18]).

Things began to change in the late 1990s. Kimball [14] intro-
duced patterns to model complex business analytics. In particular,
semi-additive and non-additive measures [10] were patterns for
measures more complex than mere aggregate functions. The SQL
CUBE operator [9] showed that it was possible to represent various
levels of subtotals in a query result without adding the complexity
of hierarchies to the data model. Analytic functions (OVER) [20]
allowed running totals and calculations of mixed grain, in some
cases allowing the elimination of self-joins [22]. FILTER, WITHIN
GROUP and WITHIN DISTINCT clauses [11] provided finer control
over the values going into an aggregate function.

MDX was (at last!) a textual language for dimensional queries
[19]. Unfortunately, its designers chose a syntax that was superfi-
cially similar to SQL, and therefore many failed to grasp its radi-
cally different semantics. Among those features were an evaluation
context consisting of one member for each of the current cube’s
dimensions, and the ability to define calculated measures and mem-
bers using context-sensitive expressions. As a standard language,
there were multiple implementations of MDX, including Microsoft
Analysis Services, Mondrian [1], SAP BW, and SAS. Some of these
implementations were backed by relational databases (a technique
called ROLAP [17]), and dimensional languages came to be seen as
a semantic layer on top of the relational model.

The semantic layer’s main contribution was not cubes. (Data
sets with axes, hierachies and cells are harder for downstream tools
to consume than relations.) It was the ability to define, just once,
the calculations central to the business, and to associate columns
with presentation metadata such as value formats and default sort
order. For example, Tableau’s Level of Detail (LOD) expression
language allows users to control the grain at which aggregations
occur; Looker’s centralized model makes governance easier and
makes calculations consistent.

But these semantic layers’ languages were not SQL; to benefit
from a semantic layer, users had to use its less-expressive, vendor-
specific query language. In the next section, we describe how to
extend SQL so that it can serve as the semantic layer.

3 MEASURES
In this section we describe the new concepts and their SQL syntax.
We illustrate with examples; semantics are deferred to section 4.

3.1 Tables are broken
Tables are SQL’s fundamental data model. Tables are implemented
in several ways, including base tables, views, and query specifica-
tions, but any table you use in a query will have the same behavior.
If you have a query that uses a view, and you substitute a base table
that has the same rows as the view, the query will give the same
results. Furthermore, the model is closed: every SQL query returns
a table.

Tables are unable to provide reusable calculations. Suppose we
have an Orders table that contains several orders for each product
name and customer (table 2), and an expert SQL user has written a
query (listing 1) to compute the profit margin for each product.

custName custAge

Alice 23
Bob 41
Celia 17

Table 1: Customers table

prodName custName orderDate revenue cost

Happy Alice 2023/11/28 6 4
Acme Bob 2023/11/27 5 2
Happy Alice 2024/11/28 7 4
Whizz Celia 2023/11/25 3 1
Happy Bob 2022/11/27 4 1

Table 2: Orders table

SELECT prodName ,
COUNT (*) AS c,
(SUM(revenue) - SUM(cost)) / SUM(revenue)

AS profitMargin
FROM Orders
GROUP BY prodName;

Listing 1: Summarizing Orders by product name

We now wish to create a SQL view that will allow less-expert
users to perform similar queries without typing out the formula for
profit margin. Listing 2 creates the view SummarizedOrders and
attempts to use its profitMargin column in a query to compute
the profit margin for each product.
CREATE VIEW SummarizedOrders AS

SELECT prodName , orderDate ,
(SUM(revenue) - SUM(cost)) / SUM(revenue)

AS profitMargin
FROM Orders
GROUP BY prodName , orderDate;

SELECT prodName , AVG(profitMargin)
FROM SummarizedOrders
GROUP BY prodName;

Listing 2: SummarizedOrders view

The query does not return the desired result; the desired result
would weigh each order equally, but actual result is an average
over each (prodName, orderDate) combination. There is no cor-
rect query in valid SQL; any correct query must read all rows

Measures in SQL SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

in Orders, but the rules of relational algebra do not allow the
SummarizedOrders view to return anymore information to a query
than its (summarized) rows.

3.2 Measures and the AGGREGATE aggregate
function

To solve the problem, we introduce measures. Informally, a measure
is a column defined by a formula, and when that measure is used,
the formula is ‘copy-pasted’ into the invocation. (More formally,
as we shall see later, a measure behaves as a context-sensitive
expression, taking its evaluation context from the clause in which
it is used.) This means each use of a measure can be expanded into
an traditional SQL query by explicitly, repetitively spelling out the
contextual filters.

Listing 3 defines a view, EnhancedOrders, that contains a mea-
sure, and uses it in a query.

CREATE VIEW EnhancedOrders AS
SELECT orderDate , prodName ,

(SUM(revenue) - SUM(cost)) / SUM(revenue)
AS MEASURE profitMargin

FROM Orders;

SELECT prodName , AGGREGATE(profitMargin)
FROM EnhancedOrders
GROUP BY prodName;

Listing 3: EnhancedOrders view

There are a few things to note:

• The AS MEASURE syntax indicates that profitMargin is to
be a measure, not a regular column.

• The EnhancedOrders view does not contain a GROUP BY
clause, and therefore returns the same number of rows as
the Orders table.

• The measure formula contains aggregate functions, which
would not be valid if this were a normal query. Measures
need to be aggregatable — that is, valid with any possible
GROUP BY clause in the query that uses it — and therefore
their formulas often contain aggregate functions.

The query uses the profitMargin measure and evaluates it in
the context of the current group row, aggregating over all rows
with the current value of prodName. Users of the EnhancedOrders
view do not need to know the formula for profitMargin, nor need
access to the underlying Orders table or its revenue and cost
columns, which meets our goal of providing an abstraction.

3.3 Measures are not really aggregate functions
The AGGREGATE function is present for largely cosmetic reasons.
SQL users know that a column that is not in the GROUP BY clause
must be wrapped in an aggregate function when used in the SELECT
clause, so the AGGREGATE function makes such users (and tools
that generate SQL) more comfortable. As an aggregate function,
AGGREGATE conveniently converts any query into an aggregate
query.

But framing measures as aggregate functions sells them short.
They are in fact evaluated very differently from aggregate functions.
Consider the following query (listing 4).

SELECT prodName , AGGREGATE(profitMargin),
COUNT (*)

FROM EnhancedOrders
GROUP BY prodName;

prodName profitMargin count
======== ============ =====
Acme 0.60 1
Happy 0.47 3
Whizz 0.67 1

Listing 4: Evaluating a query

What happens in the SELECT clause as the query is about to emit
the row for ‘Happy’? GROUP BY has assembled a group of 3 rows
for which prodName equals ‘Happy’, and the COUNT(*) aggregate
function is evaluated in the usual way over these rows, emitting
the value 3.

The measure does not operate on the group rows (except indi-
rectly). Its only argument is the evaluation context, which consists
of the predicate1

prodName = 'Happy'.

The effect is as if the query has been expanded as follows (listing
5):

SELECT prodName ,
(SELECT (SUM(i.revenue) - SUM(i.cost)) / SUM(i.revenue)

FROM Orders AS i
WHERE i.prodName = o.prodName),

COUNT (*)
FROM Orders AS o
GROUP BY prodName;

Listing 5: Query after expansion of measure

The measure has been replaced by a scalar subquery. The sub-
query is over Orders, the base table of the view in which the mea-
sure was defined, and uses the same formula. To the subquery has
been added a WHERE clause that expresses the evaluation context,
and therefore the formula will be evaluated over the precise subset
of rows in Orders.

In the next section, we shall define measures in terms of context-
sensitive expressions.

3.4 Context-Sensitive Expressions
You might regard a measure as simply ‘a column that knows how
to aggregate itself,’ and indeed many measures are just that. But
the goal is reusable calculations, which means that the client query
does not know the measure’s formula, and the measure may use
data that is not accessible to the client.

So, we define the behavior of measures in terms of a new concept:
the context-sensitive expression. Some definitions:

• A context-sensitive expression (CSE) is an expression
whose value is determined by an evaluation context.

• An evaluation context is a predicate whose terms are one
or more columns from the same table.

• This set of columns is the dimensionality of the CSE; we
sometimes informally refer to these columns as dimension
columns even though they are regular columns.

1We have simplified a little; if prodName allowed null values, the predicate would use
IS NOT DISTINCT FROM, rather than =, in order to handle null values correctly.

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Julian Hyde and John Fremlin

• A measure is a special kind of column that becomes a CSE
when used in a query. Its dimensionality is the set of non-
measure columns in its table.

• If a query references a table that has a measure, then any use
of that measure in an expression has an implicit evaluation
context. This context depends on the values of themeasure’s
dimension columns and on the call site (which query clause,
and whether there are joins or filters).

• The data type of a CSE is t MEASURE, for some data type t;
for example INTEGER MEASURE).

• The evaluation operator EVAL evaluates a CSE in the eval-
uation context of the call site; if the expression has type t
MEASURE, the value has type t.

• The context transformation operator AT modifies the
evaluation context.

Applying these concepts to the query in listing 4:
• The measure in the query is profitMargin, and its dimen-
sionality is the column set {prodName, orderDate}.

• profitMargin has type DOUBLE MEASURE, and therefore AG-
GREGATE(o.profitMargin) has type DOUBLE.

• profitMargin is a measure, and therefore a reference to it
is CSE.

• AGGREGATE(o.profitMargin) expands to
EVAL(o.profitMargin AT (VISIBLE)).2

• The call site is the SELECT clause of an aggregate query, and
therefore the evaluation context is a predicate that restricts
to the rows matching the current group key, prodName =
o.prodName. Per the requirements of an evaluation context,
it is in terms of one of profitMargin’s dimension columns,
prodName. (The right-hand side of the equality, o.prodName,
is a correlation variable that is effectively constant when the
predicate is invoked.)

• Substituting the measure with a scalar subquery and a pred-
icate that expresses the evaluation context yields the ex-
panded query in listing 5, as expected.

CSEs and aggregate functions have fundamentally different eval-
uation models:

• Aggregate functions, like relational algebra, are bottom-up.
The result of the calculation depends on the input rows, and
the sequence of operators applied to them.

• CSEs are top-down. The result of the calculations is deter-
mined by the evaluation context.

The top-down evaluation model has a number of advantages.
• Whereas aggregate functions can only be used in call sites
where there is a set of rows to aggregate over, such as the
SELECT or HAVING clause of a GROUP BY query, measures and
CSEs can be evaluated at any call site.

• If you wish to evaluate a calculation in different contexts
(say to compute profit growth between last year and this
year, or to compare profit for a particular product with that
for all products), top-down is more concise. In bottom-up,
each calculation requires a separate pass over the input rows.
In practice, this results in queries that have similar repeated

2The AT operator and its VISIBLE modifier will be explained in subsection 3.5.

subqueries and self-joins to combine the results of those
subqueries on their common keys.

• Top-down makes it easier to manage the grain of a calcula-
tion (daily versus monthly, per-order versus per-customer).
A measure is locked to the grain of its defining table, and
joining another table does not introduce double-counting
the way it often does for bottom-up calculations.

3.5 Modifying the evaluation context
In the previous section we saw that CSEs are evaluated in an evalu-
ation context that depends on the call site. We now introduce the
AT operator, which allows you to modify the evaluation context.
Syntax is as follows:

𝑐𝑠𝑒 AT (𝑚𝑜𝑑𝑖 𝑓 𝑖𝑒𝑟𝑠)
where cse is a context-sensitive expression and modifiers is a

list of context modifiers as shown in table 3. If there are multiple
modifiers, they take effect in sequence; cse AT (modifier1 modifier2)
is equivalent to (cse AT (modifier2)) AT (modifier1).

Syntax Effect
ALL Sets the evaluation context to TRUE
ALL dimension [di-
mension...]

Removes any dimension terms from the
evaluation context

SET dimension = ex-
pression

Adds a dimension = expression term to
the context (replacing any occurrence
of CURRENT dimension with the current
value of dimension), removing any exist-
ing dimension terms

VISIBLE Adds terms to the evaluation context for
the current query’s WHERE clause and join
conditions (if present), to ensure thatmea-
sures are calculated over only the rows
returned by the query

WHERE predicate Sets the evaluation context to predicate
Table 3: Context modifiers

ALL. The ALL modifier allows you to compute a grand total.
For example, the following query (listing 6) shows each product’s
revenue and its proportion of the total revenue:
SELECT prodName , sumRevenue ,

sumRevenue / sumRevenue AT (ALL prodName)
AS proportionOfTotalRevenue

FROM (
SELECT *, SUM(revenue) AS MEASURE sumRevenue
FROM Orders) AS o

GROUP BY prodName;

Listing 6: Query with proportion of total revenue

When the query is emitting a row, the evaluation context for the
top-level sumRevenue will be prodName = o.prodName, but due to
the AT operator, the evaluation context for the sumRevenuemeasure
inside the sumRevenue AT (ALL prodName) expression will be
TRUE. The measure sumRevenue will be evaluated by iterating over
the orders of a particular product, whereas sumRevenue AT (ALL
prodName) will be evaluated by iterating over all orders.

Measures in SQL SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

ALL with no arguments removes all filters, even filters not asso-
ciated with a particular dimension, and therefore the measure will
be evaluated over its entire source table.

SET. The SET modifier allows you to change the value of one
dimension. The following query (listing 7) uses SET with the or-
derYear dimension to show profit margins in 2024 and 2023 for
products sold in 2024:
SELECT prodName , orderYear ,

profitMargin ,
profitMargin AT (SET orderYear = CURRENT orderYear - 1)

AS profitMarginLastYear
FROM (

SELECT *,
(SUM(revenue) - SUM(cost)) / SUM(revenue)

AS MEASURE profitMargin ,
YEAR(orderDate) AS orderYear

FROM Orders
)

WHERE orderYear = 2024
GROUP BY prodName , orderYear;

Listing 7: Comparing profit margins in 2023 and 2024

This query is doing something novel for SQL: it is evaluating the
profitMargin measure over data that has already been removed
from the query by the WHERE clause.

The CURRENT qualifier applied to a dimension returns the null
value if the dimension has not been constrained to a single value by
a SET modifier or WHERE clause in the enclosing evaluation context.

If the argument to SET (or ALL) is an expression, such as DAY-
OFWEEK(orderDate), it is treated as an ad hoc dimension. Ad hoc
dimensions do not greatly complicate the semantics for evaluating
measures. All filters in the evaluation context, whether on dimen-
sions, or on expressions involving dimensions, are combined into a
single predicate, and the measure value is only determined only by
values returned by the predicate, not the structure of the expres-
sions that built that predicate.

VISIBLE. The VISIBLE modifier adds terms to the evaluation
context so that the measure only includes rows allowed by the
current WHERE clause3. Consider the following query (listing 8),
which computes the count and sum of revenue for orders not made
by Bob, grouped by product.
SELECT o.prodName ,

COUNT (*) AS c,
AGGREGATE(o.sumRevenue) AS rAgg ,
o.sumRevenue AT (VISIBLE) AS rViz ,
o.sumRevenue AS r

FROM (SELECT *, SUM(revenue) AS MEASURE sumRevenue
FROM Orders) AS o

WHERE o.custName <> 'Bob'
GROUP BY ROLLUP(o.prodName);

prodName c rAgg rViz r
======== === ===== ===== =====
Happy 2 13 13 17
Whizz 1 3 3 3

3 16 16 25

Listing 8: Query with visible totals

Do we wish the grand total (the last row, with empty prodName)
to include purchases by Bob, excluded by the WHERE clause? There
are cases where each would make sense, and the VISIBLE mod-
ifier makes it possible to choose. The r column, which uses the
3And join conditions, as we shall see in subsection 3.6

default evaluation context ignoring the WHERE clause, includes all
customers; rViz, which uses the VISIBLE modifier, includes only
orders not made by Bob.

COUNT and AGGREGATE (columns c and rAgg) total only the vis-
ible rows, as is customary for SQL aggregate functions. This is
why we remarked earlier that AGGREGATE(m) expands to EVAL(m
AT (VISIBLE)) for any measure m.

Advanced context modifiers. We do not regard the list of mod-
ifiers allowed by the AT operator as complete or final. For instance,
there is a compelling argument for ‘named filters’ that can be added
by a UI control and removed or overridden in the evaluation context
by the SQL runtime, but we have not included them in this paper.
The reason is simple: when a measure is evaluated, it cares only
about the predicate — do I include this row in the total, or not? —
and not about the structure of the evaluation context that created
the predicate.

We look forward to useful context modifiers devised by others,
and we believe that they will not change the fundamentals of how
measures are evaluated.

3.6 Measures and joins
It’s worth discussing how measures work in join queries, because
people’s desired semantics are complicated, and because the natural
semantics of measures is different — we believe in a good way —
from people’s expectations of SQL, namely aggregate functions.

Consider a query that joins a table with measures (Enhanced-
Customers) to another table (Orders).

WITH EnhancedCustomers AS (
SELECT *, AVG(custAge) AS MEASURE avgAge
FROM Customers)

SELECT o.prodName ,
COUNT (*) AS orderCount ,
AVG(c.custAge) AS weightedAvgAge ,
c.avgAge AS avgAge ,
c.avgAge AT (VISIBLE) AS visibleAvgAge

FROM Orders AS o
JOIN EnhancedCustomers AS c USING (custName)

WHERE c.custAge >= 18
GROUP BY o.prodName;

Listing 9: Joining measures

The join is one-to-many. A given customer may match zero, one
or many orders. The query semantics do not depend on the SQL
system knowing which primary keys and foreign keys exist. That
would arguably contradict the data independence principles of SQL.

How many rows are returned? What are the values of prodName
and orderCount? These are straightforward questions to answer,
because measures do not affect the basic operations of SQL, such
as the number of rows in a relation. A row is returned for each
product that has at least one order to a customer 18 or older, and
the count is the number of orders.

The weightedAvgAge column computes the average customer
age in the traditional SQL way. It joins orders to customers, removes
child customers under 18, and for all joined rows with the same
product computes a weighted average of the ages. If one product
has one order, and another has two orders from the same customer,
the second contributes twice as much to the average as the first.

Which average is correct — the weighted average, the visible
average (containing customers only 18 or older), or the unweighted

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Julian Hyde and John Fremlin

average — depends, of course, on what you want the number for,
but it is useful that there is a concise syntax for each.

4 SEMANTICS
In the previous section, we introduced several new SQL concepts:
measures, context-sensitive expressions, and operations that modify
the evaluation context. We now define their semantics.

In our data model for analytic SQL, which adds measures to
tables, it is important to separate how measures are defined from
how they are used. Ameasuremay be defined using the AS MEASURE
construct, or it may be defined in some other way, but any query
that uses that measure should never be able to tell.

To keep the semantics separate, we therefore proceed as follows.
First we define the evaluation context, and how it is perceived by
expressions. Then we define how a table interacts with the query
optimizer to convert measure references into expressions. Lastly,
we define the AT operator.

4.1 Lambdas
In order to simplify the explanation of semantics, we use a func-
tional extension to the SQL language, as follows.

A note on safety. Adding function values, also known as clo-
sures or lambdas, to SQLwould make the language Turing complete,
and therefore make it difficult to reason about query termination.
This proposal does not step into those stormy waters. First, these
extensions are expanded for the query optimizer. We do not make
them accessible to the SQL user. The use of closures here is just
for clarity of exposition, particularly to clarify which definition is
meant when a name is defined in different scopes. Second, the clo-
sures that we introduce during the planning process are gone before
planning is complete. There are no function values at runtime.

• A closure represents a function expression. Its type is

FUNCTION(𝐴) RETURNS 𝑅,

where FUNCTION is a type constructor, 𝐴 is the argument
type and 𝑅 is the result type.

• A lambda (denoted ->) is a SQL operator that denotes a
closure. For example,

(x : INTEGER) → MOD(x, 2) = 0

is a function expression that returns whether its integer
argument is even; its type is FUNCTION(INTEGER) RETURNS
BOOLEAN.

• APPLY is a SQL operator that applies a closure to an argument.
For example,

APPLY((x : INTEGER) → MOD(x, 2) = 0, 3)
returns FALSE, because 3 is not even.

4.2 Semantics of context-sensitive expressions
Having defined lambdas, we outline a process to rewrite measures.

• For every measure𝑀 of value type 𝑉 that belongs to a table
whose row type (excludingmeasures) is𝑅, the system defines
an auxiliary function that has name compute𝑀4 and type
FUNCTION(rowPredicate: FUNCTION(𝑅) RETURNS BOOLEAN)

4Or a variation of that name that is unique within the namespace

RETURNS 𝑉 . The auxiliary function must be pure and deter-
ministic but may contain a reference to the table.

• At any point in the query where𝑀 is accessible, the system
is able to generate a row predicate of type FUNCTION(𝑅)
RETURNS BOOLEAN. The row predicate reflects the evaluation
context of the measure.

• If an expression occurs within a call to AT, the evaluation
context is modified by applying the modifiers in succession.

• From a evaluation context for 𝑀 can be generated a row
predicate of type FUNCTION(𝑅) RETURNS BOOLEAN

• At any point in the query where𝑀 is referenced in an expres-
sion, the compiler replaces the measure reference with a call
to its auxiliary function; the argument is the row predicate
and the return value has type 𝑉 , as required.

Here is an example that follows the above rules. We have the
following query (listing 10) that computes the ratio of this year’s
revenue to last year’s revenue, for each product.

CREATE VIEW OrdersWithRevenue AS
SELECT *, SUM(revenue) AS MEASURE sumRevenue
FROM Orders;

SELECT prodName , YEAR(orderDate) AS orderYear ,
sumRevenue / sumRevenue AT

(SET orderYear = CURRENT orderYear - 1) AS ratio
FROM OrdersWithRevenue
GROUP BY prodName , YEAR(orderDate);

Listing 10: Year over year revenue by product

The measure 𝑀 is sumRevenue, and the row type 𝑅 is the type
OrdersRow consisting of the non-measure columns of the Orders
view. Listing 11 shows the definition of a type for 𝑅, and the query
with the two references to sumRevenue replaced by calls to the aux-
iliary function computeSumRevenue. Each call has a row predicate
that reflects the evaluation context at its call site. The first call has
the evaluation context of output from the GROUP BY; in the second
call, the year in the filter context is set to the year before the current
one.

-- Row definition
CREATE TYPE OrdersRow AS ROW (prodName: VARCHAR ,

custName: VARCHAR , orderDate: DATE ,
revenue: INTEGER , cost: INTEGER);

-- Auxiliary computation for sumRevenue
CREATE FUNCTION computeSumRevenue(

rowPredicate: FUNCTION(r: OrdersRow)
RETURNS BOOLEAN) AS

SELECT SUM(o.revenue)
FROM Orders AS o
WHERE APPLY(rowPredicate , o);

-- After expansion of sumRevenue occurrences
SELECT o.prodName , YEAR(o.orderDate) AS orderYear ,

computeSumRevenue(
r -> r.prodName = o.prodName AND

YEAR(r.orderDate) = YEAR(o.orderDate))
/ computeSumRevenue(

r -> r.prodName = o.prodName AND
YEAR(r.orderDate) = YEAR(o.orderDate) - 1)

AS ratio
FROM Orders AS o
GROUP BY prodName , YEAR(orderDate);

Listing 11: Expansion of query comparing average revenue

Measures in SQL SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

5 DISCUSSION
5.1 Self-joins and window aggregates
There is a fascinating correspondence betweenmeasure expressions,
window aggregates, and self-joins.

The correspondence between window aggregates and self-joins
(expressed in the from of correlated subqueries) was first noted in
[22], whoseWinMagic algorithm rewrites certain kinds of subquery
to window aggregates. The four queries in listing 12 are equivalent,
and all find orders whose revenue is higher than the average for
their product. WinMagic provides an algorithm to rewrite query
1 (correlated subquery) to query 3 (window aggregates); queries 2
and 4 are equivalent queries using self-join and measures.

-- Query 1: correlated subquery
SELECT o.prodName , o.orderDate
FROM Orders AS o
WHERE o.revenue >

(SELECT AVG(revenue)
FROM Orders AS o1
WHERE o1.prodName = o.prodName);

-- Query 2: self -join
SELECT o.prodName , o.orderDate
FROM Orders AS o
LEFT JOIN

(SELECT prodName , AVG(revenue) AS avgRevenue
FROM Orders
GROUP BY prodName) AS o2
ON o.prodName = o2.prodName

WHERE o.revenue > o2.avgRevenue;

-- Query 3: window aggregate
SELECT o.prodName , o.orderDate
FROM

(SELECT prodName , revenue , orderDate ,
AVG(revenue) OVER (PARTITION BY prodName)

AS avgRevenue
FROM Orders) AS o

WHERE o.revenue > o.avgRevenue;

-- Query 4: measures
SELECT o.prodName , o.orderDate
FROM

(SELECT prodName , orderDate , revenue ,
AVG(revenue) AS MEASURE avgRevenue

FROM Orders) AS o
WHERE o.revenue >

o.avgRevenue AT (WHERE prodName = o.prodName);

Listing 12: Four equivalent queries to find orders with more
revenue than average for their product

Observe that queries 3 and 4 have very similar structure. This is
because the OVER operator (window aggregation) and AT operator
(measures) have the same function: to evaluating a calculation over
a collection of rows meeting some criterion. AT is more powerful
than OVER; it can evaluate arbitrary predicates where OVER’s PAR-
TITION BY can evaluate only = predicates; and it can query rows
that have been removed by a WHERE clause.

Why is the WinMagic rewrite beneficial? Observe that Orders
appears twice in queries 1 and 2 but only once in 3 and 4. This
suggests to the optimizer an execution strategy that you might
call ‘localized self-join’. The engine scans order records grouped
by product; when it has finished a product, and knows the average
revenue of that product, it rewinds to the beginning of the product
and emits orders whose revenue is greater than the average.

This strategy, of small loops probing into intermediate results
cached in memory, is characteristic of in-memory OLAP engines.
We believe it is worth investigating whether this strategy is also
beneficial in SQL engines.

Aside from the runtime benefits, the queries with less repetition
are easier to optimize, because optimizers have difficulty identifying
common sub-trees in relational algebra.

5.2 Hierarchies
We chose not to explicitly support hierarchies. Hierarchies are a
major part of dimensional systems, but they complicate the lan-
guage and are largely used for user interface concerns (for example,
suggesting fields to drill down on). For our purposes, it is sufficient
to be able to treat any expression on a dimension (for example,
YEAR(orderDate)) as an ad hoc dimension.

That said, when I set the year dimension, I should not have to
explicitly clear the month dimension. In order to achieve that effect,
we hope (in a future version of this language) to allow dimensions
to be ‘linked’ for purposes of their ALL and SET behavior.

5.3 Wide tables
Business Intelligence tools typically have a ‘cube’ or ‘business view’
concept that contains measures from a fact table and columns from
several dimension tables. This is attractive to end-users because
they do not need to specify joins. Without measures, ‘wide tables’
composed as join viewswere not advisable because denormalization
would introduce inconsistencies such as double-counting. But with
measures, calculations maintain their own consistency, and wide
tables are a recommended practice.

Wide tables can also contain measures with complex behaviors:
• A semi-additivemeasure rolls up using different aggregate
functions on different dimensions but can sometimes be
summed; for example, an items on hand (inventory) measure
rolls up using LAST_VALUE on the time dimension and SUM
on other dimensions;

• A non-additive measure never aggregates by summing,
typically a calculation based on other measures; for example,
return rate is the ratio of product units sold to product units
returned.

• Other custom measures might use a different formula for
different levels of a hierarchy; for example, the revenue mea-
sure might have a different formula at a business unit level
than at a country level. The SQL GROUPING_ID function can
be used to identify the level.

5.4 Composability
Measures are composable in several ways.

First, as we have mentioned, the query language is closed. A
query can reference tables with (or without) measures, and returns
a table with (or without) measures. Queries can therefore be nested
to arbitrary depth, as in regular SQL. Views with measures can be
created upon relations (such as a traditional relational database, or
a directory of CSV files) that do not have measures.

Second, measures can reference measures in the same query.
Measures defined using the AS MEASURE syntax can reference by
name other measures defined in the same SELECT.

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Julian Hyde and John Fremlin

(We do not, in the current language, allow recursive or mutu-
ally recursive measures. We believe that they are useful, but there
are implementation hurdles. Termination is one concern, although
spreadsheet formulas manage perfectly well without provable ter-
mination. A greater concern is that recursive measures cannot be
implemented using a static rewrite, and will require some form of
unbounded state, such as a call stack.)

Third, a measure can reference a measure or measures from an
input table, and thus a measure seems to be propagated effortlessly
through a stack of nested queries. But the semantics are defined
one step at a time. Each query is evaluating a context-sensitive ex-
pression, in its own evaluation context, and defining a newmeasure
whose dimensionality is determined by the columns that it projects,
and it is that measure that is consumed by its enclosing query.

5.5 Security
SQL’s security model is simple and robust: if I own tables that
contain sensitive information, I can write a query that accesses
those tables, publish that query as a view, and grant access to the
view but not the underlying tables. People can access the data that
I allow them to, and the optimizer will ensure that those queries
have efficient plans.

Do views with measures offer the same robust security model?
The answer is yes. This may be surprising, given that measures
return much richer values than regular columns, so let’s justify that
assertion.

A regular SQL view, without measures, returns a fixed amount of
information; this is easy to see because if I replace the view with a
base table with the same contents, every possible query will return
the same results.

Now consider a view that has regular columns a and b, hidden
columns c and d that are not projected by the view, and measures
m and n. Queries that only use a and b are straightforward; they
map to the relational core. But what of queries that also use the
measures? They too are bounded. Each measure does not return
a single value, of course, but it returns a map that can be read by
providing a predicate. If I ask for the value of measure m with the
predicate a = 0 and b < 10, it returns 6; if I ask for the value of m
with the predicate a = 1, it returns 12, and so forth.

Furthermore, the predicate can only be in terms of the dimension
columns a and b, not in terms of the hidden columns c and d. If two
rows in the underlying table(s) cannot be distinguished based on
their a and b values, then I cannot construct a predicate to separate
them.

To use an analogy, if regular column values are like pixels of a
discrete image, then measures are like holograms; their data has
more dimensions, but is still finite.

A view with measures thus allows me to create an interface that
limits which questions can be asked of the underlying data.

5.6 Looker’s Open SQL Interface
Looker[8] is a BI platform that was acquired by Google in 2019 and
is now part of Google Cloud. Using Looker’s LookML™ language,
analysts define objects called “Explores”, which are a form of the
wide tables described in subsection 5.3. These are the starting point
for data exploration via pivot tables, charts, and dashboards.

Looker also serves as a semantic layer for third-party visualiza-
tion tools such as Google Sheets, Microsoft Power BI, Tableau, and
ThoughtSpot. Those tools query the Explores, benefiting from the
joins, measures and other calculations, and presentation and navi-
gation information encapsulated in them. Organizations choose to
use a semantic layer so that Explores are defined just once, in one
place, as opposed to many redundant and inconsistent definitions
in the visualization layer.

In Looker’s Open SQL Interface[7], each Looker Explore appears
as a SQL table, the measures in that Explore appear as measure
columns, and the dimensions in that Explore appear as regular
columns. The SQL Interface accepts SQL queries that adhere to
GoogleSQL syntax, and supports most of the BigQuery operators.

Before the SQL Interface was introduced, building a connector
from a third-party tool was complicated, because expressions in
the tool’s expression language had to be translated into Looker’s
expression language. Connectors built using the SQL Interface are
much simpler, and are similar to the tools’ existing connectors to
conventional SQL databases. When generating SQL, tools can use
measures defined in Looker (e.g. AGGREGATE(profitMargin)) or
can define their own measures using aggregate functions on top of
regular columns (e.g. SUM(revenue)).

The implementation uses Apache Calcite’s SQL parser, query
planner, and SQL function library.

5.7 Natural Language to SQL
For applications such as natural-language-to-query translation,
including those powered by Large Language Models (LLMs) and
Generative AI, SQL-with-measures is an attractive target language,
for three reasons.

First, it manages complexity. Like humans, generative AI has
difficulty correctly generating large expressions, especially when
consistency is required between regions of those expressions that
are widely separated. If the target language is regular SQL, the
generated queries are large, deeply nested, and have many joins,
including complex self-joins. In SQL-with-measures, the joins and
calculations can be encapsulated in a view, and context-sensitive
expressions eliminate the need for self-joins, and therefore the
generated query is more concise and less complex.

Second, current query-generation systems use a multidimen-
sional semantic layer — for example, Analyza [6] uses a catalog
containing “additional information about the type of the column
(e.g. is it a metric, dimension, etc.), data formats (e.g. should the
number be formatted as a dollar amount), and date range defaults”
— and measures allow us to encapsulate that semantic layer as SQL
views.

Last, the corpus of queries in SQL is larger than in any other
query language, and therefore training LLMs is much easier.

Early indications are that the generated queries are smaller and
more accurate — and easier to understand. More research is needed
in this area.

6 FUTUREWORK
6.1 Formal semantics
In this paper, we have presented an informal semantics. It would
be useful if a future publication described a formal semantics for

Measures in SQL SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile

measures, context-sensitive expressions and the evaluation context.
Perhaps these could be extensions to relational algebra.

The semantics of the AT operator should be clarified. It seems rea-
sonable to allow expressions within SET, for example profitMar-
gin AT (SET YEAR(orderDate) = CURRENT YEAR(orderDate)
- 1).

The CURRENT operator should return a valid value if the evalua-
tion context implies a single value for all possible rows; for example,
if the query has GROUP BY FLOOR(orderDate TO MONTH) all rows
in a given group will have the same month and therefore the same
year. To allow the SQL semantic analyzer to safely make that de-
duction, we need new rules for deducing functional dependencies
among expressions, perhaps a notion similar to Calcite’s nested
time frames [12].

6.2 Generating queries from natural language
As mentioned in subsection 5.7, research should ascertain whether
SQL-with-measures is an effective target language for AI-powered
query generation.

6.3 Operators for managing grain
Measure have the useful property that they preserve grain in the
presence of joins (preventing double-counting), but we need more
operators for managing grain.

For example, an items on hand semi-additive measure might take
the count of each product on the warehouse shelf on the last day
of the time period, and then sum over all products and warehouses.
A rank change non-additive measure might rank each product by
revenue in a given region and time period, and then compute the
difference with the rank in the previous time period. Such measures
perform multiple aggregation steps, each step using a different
aggregate function and occurring in a particular order.

A promising candidate is the PER clause for aggregate functions,
proposed as a generalization of Calcite’s WITHIN DISTINCT clause
[11].

6.4 Implementation strategies
Strategies to implement querieswithmeasures and context-sensitive
expressions require further study.

One strategy is to rewrite queries in terms of simpler operations.
Our algorithm in subsection 4.2, which rewrites a measure reference
as a correlated scalar subquery, is general-purpose but not very
efficient. In simple cases (such as a query with GROUP BY and no
JOIN) it may be valid to inline the measure definition. In cases with
joins, a WITHIN DISTINCT clause may be introduced to preserve
the measure’s grain. The correspondences noted in subsection 5.1
suggests that some queries can be rewritten to window aggregates,
especially if window aggregates are generalized to computations
to access “lost” rows.

As we remarked earlier, recursive measures cannot be solved
using a static rewrite, and may require a new physical algorithm.
That algorithm may also be applicable to other cases.

6.5 Forecasts and time series
Forecasting and time series analysis are similar domains. Time
series analysis often involves interpolation, such as changing the

temporal grain of a measure (resampling) to match other measures,
or to fill gaps where no measurement is available; forecasting gen-
erally extrapolates, creating estimates of a measure in the future
based on past values of that measure and related measures.

Both make extensive use of statistical techniques; for example,
autoregressive integrated moving average (ARIMA) can detect and
compensate for periodicity. Measures can simplify things for users:
an expert defines the calculations, encapsulates them in a model
(view) as measures, and the user can use the model without worry-
ing about the complexity.

A challenge to be solved is that both techniques create new
values for dimensions (for example, recording a revenue of zero
on a holiday, when the business is closed, or generating a revenue
forecast for a future year, for which there are not yet any orders).
We will need to devise a query syntax for synthesizing rows. At
the same time, we can answer the important question, “How can I
evaluate a measure on a table that has no rows?”

6.6 Log files and sequential processing
Much modern data processing, especially during load and transfor-
mation phases, takes place on log files that have a nested structure.
Records are processed in sequence, often in a single pass, but with a
processing context that includes the current record, sibling records
that occur within the same parent (such as the group of records for
the same browser session), the parent record, and perhaps other
data values computed from various “ancestor” records. Measures
might allow such calculations to be expressed declaratively.

On the related topic of sequence data, measures may be helpful
in organizing the complex rules for identifying logical business
events as part of the data model. Their relationship with SQL’s
existing MATCH_RECOGNIZE clause [21] should be investigated.

7 SUMMARY
Measures are a natural extension to the relational data model. They
allow calculations, including aggregate functions, to be encapsu-
lated in the definition of a table. These calculations offer context-
dependent views of the table; not a single static image but one that
varies based on the viewer, like a hologram.

The evaluation context of a measure is established in its defi-
nition and can optionally be adjusted when it is used, by making
changes to just the expression that invokes the measure. This lo-
cality of reference allows queries to be written concisely, allows
queries to be composed reliably, and brings modularity to relational
systems using SQL.

Recent explorations with LLMs remind us how challenging were
those non-local transformations that we previously required of
human SQL authors. Measures make these repetitive filters and
self-joins invisible, andwe hope that they improve the lot of humans
and machines alike.

8 ACKNOWLEDGMENTS
This work would not have been possible without many design
discussions and much patient, constructive feedback. The authors
would like to thank their Google colleagues Adam Wilson, Alexey
Leonov-Vendrovskiy, Bengu Li, David Wilhite, Goetz Graefe, Jeff

SIGMOD-Companion ’24, June 9–15, 2024, Santiago, AA, Chile Julian Hyde and John Fremlin

Shute, Lloyd Tabb, Marieke Gueye, Matthew Brown, Mosha Pa-
sumansky, Riccardo Muti, Romit Kudtarkar, and Serhiy Tykhan-
skyy.

REFERENCES
[1] William D Back, Nicholas Goodman, and Julian Hyde. 2013. Mondrian in Action:

Open source business analytics. Manning Publications Company.
[2] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J Mior, and

Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Optimized
Query Processing Over Heterogeneous Data Sources. In Proceedings of the 2018
International Conference on Management of Data. ACM, 221–230. https://doi.org/
10.1145/3183713.3190662

[3] E. F. Codd. 1970. A relational model of data for large shared data banks. Commun.
ACM 13, 6 (jun 1970), 377–387. https://doi.org/10.1145/362384.362685

[4] Edgar F Codd. 1993. Beyond decision support. Computerworld (1993).
[5] George Colliat. 1996. OLAP, relational, and multidimensional database systems.

ACM Sigmod Record 25, 3 (1996), 64–69.
[6] Kedar Dhamdhere, Kevin S. McCurley, Ralfi Nahmias, Mukund Sundararajan,

and Qiqi Yan. 2017. Analyza: Exploring Data with Conversation. In Proceedings of
the 22nd International Conference on Intelligent User Interfaces (Limassol, Cyprus)
(IUI ’17). Association for Computing Machinery, New York, NY, USA, 493–504.
https://doi.org/10.1145/3025171.3025227

[7] Google. 2023. Looker Open SQL interface. https://cloud.google.com/looker/docs/
sql-interface. [Online; accessed 01-Apr-2024].

[8] Google. 2024. Looker. https://cloud.google.com/looker. [Online; accessed
12-Apr-2024].

[9] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,
Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. 1997. Data cube: A re-
lational aggregation operator generalizing group-by, cross-tab, and sub-totals.
Data mining and knowledge discovery 1 (1997), 29–53.

[10] John Horner, Il-Yeol Song, and Peter P. Chen. 2004. An analysis of additivity in
OLAP systems. In Proceedings of the 7th ACM International Workshop on Data

Warehousing and OLAP (Washington, DC, USA) (DOLAP ’04). Association for
Computing Machinery, New York, NY, USA, 83–91. https://doi.org/10.1145/
1031763.1031779

[11] Julian Hyde. 2021. WITHIN DISTINCT clause for aggregate functions. Feature
request CALCITE-4483. Apache Calcite. https://issues.apache.org/jira/browse/
CALCITE-4483

[12] Julian Hyde. 2022. Custom time frames. Feature request CALCITE-5155. Apache
Calcite. https://issues.apache.org/jira/browse/CALCITE-5155

[13] JSR-69 2003. Java™ OLAP Interface (JOLAP), final draft. Technical Report. JSR-69
Expert Group. https://jcp.org/aboutJava/communityprocess/first/jsr069/index.
html

[14] Ralph Kimball and Margy Ross. 2002. The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling (2nd ed.). John Wiley & Sons, Inc., USA.

[15] Bart Kuijpers and Alejandro Vaisman. 2017. An algebra for OLAP. Intelligent
Data Analysis 21, 5 (2017), 1267–1300.

[16] MDAPI-2.0 1998. MDAPI™ the OLAP Application Program Interface Version 2.0.
Technical Report. The OLAP Council.

[17] Konstantinos Morfonios, Stratis Konakas, Yannis Ioannidis, and Nikolaos Kotsis.
2007. ROLAP implementations of the data cube. ACM Comput. Surv. 39, 4 (nov
2007), 12–es. https://doi.org/10.1145/1287620.1287623

[18] Oscar Romero and Alberto Abelló. 2007. On the Need of a Reference Algebra for
OLAP. In International Conference on Data Warehousing and Knowledge Discovery.
Springer, 99–110.

[19] Mark Whitehorn, Robert Zare, and Mosha Pasumansky. 2004. Fast Track to MDX.
https://api.semanticscholar.org/CorpusID:61077971

[20] Fred Zemke, Krishna Kulkarni, AndyWitkowski, and Bob Lyle. 1999. Introduction
to OLAP functions. Change proposal. ANS-NCTS H2-99-14 (April) (1999).

[21] Fred Zemke, AndrewWitkowski, Mitch Cherniak, and Latha Colby. 2007. Pattern
matching in sequences of rows. Change proposal for ISO 9075-1. ANSI INCITS.

[22] Calisto Zuzarte, Hamid Pirahesh, Wenbin Ma, Qi Cheng, Linqi Liu, and Kwai
Wong. 2003. WinMagic: Subquery elimination using window aggregation. In
Proceedings of the 2003 ACM SIGMOD International Conference on Management
of Data, San Diego, California, USA, June 9-12, 2003. ACM, 652–656. https:
//doi.org/10.1145/872757.872840

https://doi.org/10.1145/3183713.3190662
https://doi.org/10.1145/3183713.3190662
https://doi.org/10.1145/362384.362685
https://doi.org/10.1145/3025171.3025227
https://cloud.google.com/looker/docs/sql-interface
https://cloud.google.com/looker/docs/sql-interface
https://cloud.google.com/looker
https://doi.org/10.1145/1031763.1031779
https://doi.org/10.1145/1031763.1031779
https://issues.apache.org/jira/browse/CALCITE-4483
https://issues.apache.org/jira/browse/CALCITE-4483
https://issues.apache.org/jira/browse/CALCITE-5155
https://jcp.org/aboutJava/communityprocess/first/jsr069/index.html
https://jcp.org/aboutJava/communityprocess/first/jsr069/index.html
https://doi.org/10.1145/1287620.1287623
https://api.semanticscholar.org/CorpusID:61077971
https://doi.org/10.1145/872757.872840
https://doi.org/10.1145/872757.872840

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related work
	3 Measures
	3.1 Tables are broken
	3.2 Measures and the AGGREGATE aggregate function
	3.3 Measures are not really aggregate functions
	3.4 Context-Sensitive Expressions
	3.5 Modifying the evaluation context
	3.6 Measures and joins

	4 Semantics
	4.1 Lambdas
	4.2 Semantics of context-sensitive expressions

	5 Discussion
	5.1 Self-joins and window aggregates
	5.2 Hierarchies
	5.3 Wide tables
	5.4 Composability
	5.5 Security
	5.6 Looker's Open SQL Interface
	5.7 Natural Language to SQL

	6 Future work
	6.1 Formal semantics
	6.2 Generating queries from natural language
	6.3 Operators for managing grain
	6.4 Implementation strategies
	6.5 Forecasts and time series
	6.6 Log files and sequential processing

	7 Summary
	8 Acknowledgments
	References

